Symbols

Latin symbols

 $a, A$     empirical constants in [Best 1950] drop spectrum (eq. 2.24)  
 $A$  [m$^{2}$]  area  
  $A_{\text{catch}}$  [m$^{2}$]  catchment area  
 $b$     empirical constant in [Best 1950] drop spectrum (eq. 2.24)  
 $c$     slope of the fit function $y=cx$, in correlation plots  
 $c_p$  [-]  mean pressure coefficient  
 $C$     empirical constant in [Best 1950] drop spectrum (eq. 2.24)  
 $C_1$, $C_2$, $C_3$, $C_4$     parameters in a general formula for raindrop spectra (eq. 2.25)  
 $C_d$  [-]  drag coefficient  
 $C_\mu$  [-]  $K$-$\epsilon$ model constant  
 $C_{1\epsilon}$  [-]  $K$-$\epsilon$ model constant  
 $C_{2\epsilon}$  [-]  $K$-$\epsilon$ model constant  
 $d$  [m]  displacement height  
 $D$  [m]  raindrop diameter  
 $D_{50}$  [m]  median median drop size (eq. 2.20)  
 $E$  [-]  roughness parameter (eq. 6.5)  
 $F(D)$  [-]  fraction of liquid water in the air comprised by drops with diameters less than $D$ (eq. 2.19)  
 $g$  [m s$^{-2}$]  gravitational acceleration  
  $h_{\text{i.b.l.}}$  [m]  internal boundary layer height  
 $\mathcal{H}$  [m]  building height; obstacle height  
 $I_u, I_v, I_w$  [-]  turbulence intensities  
 $k$  [-]  driving rain ratio (eq. 2.28)  
  $\text{\fontfamily{computermodern}\selectfont\itshape k}$  [-]  von Kármán constant (0.4)  
 $K$  [m$^{2}$ s$^{-2}$]  turbulent kinetic energy per unit of mass  
  $\ell_{\text{stop}}$  [m]  stopping distance  
 $\mathcal{L}$  [m]  characteristic eddy dimension (section 2.2.3)  
 $\mathcal{L}_g$  [m]  smaller of $2\mathcal{H}$ (two times building height) and $\mathcal{W}$ (building width), section 2.1.4  
 $L_u$  [m]  integral length scale  
 $m$  [kg]  mass  
 $m(D)$  [kg m$^{-3}$ m$^{-1}$]  raindrop mass concentration spectrum  
 $n(D)$  [m$^{-3}$ m$^{-1}$]  raindrop number concentration spectrum  
 $n_0$  [m$^{-3}$ m$^{-1}$]  parameter in [Marshall and Palmer 1948] drop spectrum (eq. 2.21)  
 $N$  [-]  number  
 $q$     empirical constant in [Best 1950] drop spectrum (eq. 2.24)  
 $r$     correlation coefficient; the coefficient of determination is $r^2$ (eq. 3.4)  
 $R$  [mm h$^{-1}$]  rain intensity, also expressed in [kg m$^{-2}$ s$^{-1}$] = [mm s$^{-1}$]  
 $R_{\text {f}}$  [mm h$^{-1}$]  driving rain intensity  
 $R\!e$  [-]  Reynolds number  
 $t$  [s]  time  
 $t_{\text{cl}}$  [s]  averaging and summation period, the periods are synchronised to clock and calendar; the first period of a day starts at 00h00.  
  $t_{\text{dry}}$  [s]  pause between rain spells  
 $t_{\text{s}}$  [s]  sample time  
  $t_{\text{prec}}$  [s]  precipitation time  
 $T$  [s]  integral time (eq. 6.7)  
 $u_\ast$  [m s$^{-1}$]  friction shear velocity  
 $\vec{u}$  [m s$^{-1}$]  wind velocity vector  
 $u,v,w$  [m s$^{-1}$]  longitudinal, lateral and vertical wind velocity  
  $\vec{u}_{\text{D}}$  [m s$^{-1}$]  raindrop velocity vector  
  $u_{\text{D}},
v_{\text{D}},
w_{\text{D}}$  [m s$^{-1}$]  raindrop velocity in $x$, $y$ and $z$ direction  
 $U$  [m s$^{-1}$]  wind speed $= \sqrt{U_x^2+U_y^2+U_z^2}$  
 $U_{\text {h}}$  [m s$^{-1}$]  horizontal wind speed $= \sqrt{U_x^2+U_y^2}$  
 $U_{\text{10}}$  [m s$^{-1}$]  horizontal wind speed at 10 m height on open terrain with $z_0$ = 0.03 m and $d$ = 0 m  
 $U_x, U_y, U_z$  [m s$^{-1}$]  wind velocity components ($U_x$ is due north, $U_y$ west, $U_z$ upwards)  
 $U_1,U_2,U_3$  [m s$^{-1}$]  wind velocity vectors according to the anemometer axis system  
  $V_{\text{tip}}$  [ml]  effective volume of a rain gauge bucket  
  $w_{\text{term}}$  [m s$^{-1}$]  terminal drop speed  
 $W$  [kg m$^{3}$]  liquid water content (i.e. amount of liquid water per unit of air)  
 $\mathcal{W}$  [m]  building width  
 $x,y,z$  [m]  position coordinates ($z$ is upwards)  
 $x,y$     $x$-axis quantity and $y$-axis quantity of the fit function $y=cx$, in correlation plots  
 $z_0$  [m]  roughness length  

Greek symbols

 $\alpha $     coefficient in Lacy's formula 2.29  
 $\alpha $     coefficient in model 2 (eq. 5.4)  
 $\beta $     exponent in Lacy's formula 2.29  
 $\beta $     exponent in model 2 (eq. 5.4)  
 $\beta $     constant in eq. 6.8  
 $\gamma $     exponent in model 2 (eq. 5.4)  
 $\epsilon$  [m$^{2}$ s$^{-3}$]  dissipation rate of $K$  
 $\eta (D)$  [-]  catch ratio (eq. 2.26)  
 $\theta $  [$^\circ $]  constant in function $\text {\textit {L}}$ (fig. 5.23) for model 2 (eq. 5.4)  
 $\theta $  [$^\circ $]  angle (in chapter 6)  
 $\kappa$  [-]  obstruction factor, eq. 2.35  
 $\Lambda $  [m$^{-1}$]  parameter in [Marshall and Palmer 1948] drop spectrum (eq. 2.21)  
 $\mu$     parameter in [Ulbrich 1983] drop spectrum (eq. 2.23)  
 $\mu$  [kg m$^{-1}$ s$^{-1}$]  dynamic viscosity (1.6-1.8 10$^{-5}$ kg m$^{-1}$ s$^{-1}$ for air), $\mu = \rho \nu$  
 $\nu$  [m$^{2}$ s$^{-1}$]  kinematic viscosity (1.3-1.5 10$^{-5}$ m$^{2}$ s$^{-1}$ for air), $\nu = \mu /\rho$  
 $\nu_t$  [m$^{2}$ s$^{-1}$]  turbulent or eddy viscosity  
 $\xi $  [-]  constant in function $\text {\textit {L}}$ (fig. 5.23) for model 2 (eq. 5.4)  
 $\rho$  [kg m$^{-3}$]  density  
 $\sigma_K$  [-]  $K$-$\epsilon$ model constant  
  $\sigma_\epsilon$  [-]  $K$-$\epsilon$ model constant  
 $\tau$  [N m$^{-2}$]  turbulent shear stress $\rho u' w'$  
 $\tau_0$  [N m$^{-2}$]  surface shear stress (eq. 2.2)  
 $\varphi(D)$  [kg m$^{-2}$ s$^{-1}$ m$^{-1}$]  raindrop mass flux spectrum (definition of $\varphi _{\text {h}}(D)$ in eq. 2.16)  
 $\Phi $  [$^\circ $]  horizontal wind direction, angle from which the wind blows, clock wise from north (e.g. 270$^\circ $ is wind from west)  

Subscripts

 5, 10, 60     clock period $t_{\text{cl}}=$ 5, 10 and 60 min respectively  
 $\text{a}$     air  
 $\text{c}$     corrected, esp. for rain intensity: rain intensity is obtained by combining data of a tipping-bucket rain gauge and a rain indicator (see section 3.4.3)  
 $\text{D}$     raindrop  
 $\text{e}$     estimate (eq. 3.4)  
 $\text{f}$     at façade  
 $\text{h}$     horizontal (at reference unless otherwise indicated)  
 $\text{m}$     measurement (eq. 3.4)  
 P1, P2, ...     measurement positions  
 $\text{r}$     reference  
 $\text{u}$     uncorrected, esp. for rain intensity: rain intensity is obtained by simply counting the tippings of a tipping-bucket rain gauge (see section 3.4.3)  
 $\text{v}$     vertical (at reference unless otherwise indicated)  

Operators

 $\bar{x}$     mean of $x$  
 $x'$     fluctuating component of $x$ ( $x = \bar{x} + x'$)  
 $\sigma_{x}$     standard deviation of $x$  
  $\text {\textit {L}}(\Phi ,\theta ,\xi )$      $\cos((\Phi-\theta)/\xi)$ for $-90\text{$^\circ$}\xi \le \Phi-\theta \le 90\text{$^\circ$}\xi$, and by $0$ for the other values of $\Phi $, where $\xi $ is limited to the interval 0-1 (fig. 5.23)  



Subsections
© 2002 Fabien J.R. van Mook
ISBN 90-6814-569-X
Published as issue 69 in the Bouwstenen series of the Faculty of Architecture, Planning and Building of the Eindhoven University of Technology.